
How to create a simple ColdFire and Altera FPGA IOC (Draft)

W. Eric Norum

September 28, 2005

Contents

1 Introduction 1

2 FPGA application 3

3 EPICS application 11

4 Remote Reset 15

A ledDeviceSupport.c 17

B Alternate Pinouts 21

i

Chapter 1

Introduction

This tutorial presents a step-by-step series of operations for creating a simple EPICS application for an Arcturus
uCDIMM ColdFire 5282 module attached to an Altera FPGA development kit. The following software and hardware
components are assumed to be in place:

• Arcturus uCDIMM ColdFire 5282

• RTEMS with m68k tool chain and uC5282 board-support package

• EPICS version R3.14.7 or greater with RTEMS-uC5282 target

• Altera FPGA development kit with at least two sets of expansion prototype connectors.

• ColdFire/Stratix adapter card

• Quartus version 5.0 or greater and Altera SOPC builder

• ColdFire bridge SOPC component

• Console reset detect Quartus component (optional)

This tutorial is written for use with an Altera Stratix II DSP development kit. The changes required for use with other
development kits are summarized in appendix B.

1

CHAPTER 1. INTRODUCTION

2

Chapter 2

FPGA application

1. Use the Quartus ”New Project Wizard” to create a new project. I called the project IOC_Example with same
name for the top-level entity:

2. Ensure that unused pins are treated as inputs (Assignments→Device. . . , Device & Pin Options, Unused Pins
tab). Not all the ColdFire signals are used by this example and Quartus helpfully grounds all the corresponding

3

CHAPTER 2. FPGA APPLICATION

pins if this step is omitted!

3. Start the SOPC Builder (Tools→SOPC Builder. . .) and create a new SOPC system. I called the SOPC system
IOC_ExampleSystem:

4. Set the SOPC Board and Clock parameters:

4

CHAPTER 2. FPGA APPLICATION

5. If you have not done so in a previous SOPC project, add the directory containing the ColdFire Bridge SOPC
component to the list of directories which the SOPC Builder will search (File→SOPC Builder Setup. . .). Note
that this list of directories applies to SOPC Builder sessions in all projects. Note also that changes to this list
do not take effect until the SOPC Builder is next started. When the SOPC Builder is started and searches the
directory containing the ColdFire Bridge SOPC component it will add the ColdFire Bridge component to the
list of User Logic components.

6. Double-click the ColdFire Bridge component to add it to the SOPC design:

5

CHAPTER 2. FPGA APPLICATION

7. Add an 8-bit output port to the SOPC design:

The SOPC components and connections should then be:

8. Click the Generate button to create the SOPC block.

9. Create the top-level entity design file. In the Quartus window select File→New, create a new Block Dia-
gram/Schematic File and save it as IOC_Example.

10. Double-click in the IOC_Example.bdf design window and add the IOC_ExampleSystem SOPC block
to the design:

6

CHAPTER 2. FPGA APPLICATION

11. Add I/O pins and assign them to the appropriate FPGA pins using the Assignment Editor. A list of the pin
assignments for several different development kits is included in appendix B. The complete system should then
appear as shown on the following page.

12. Make some changes to some settings (Assignments→Settings. . .):

User Libraries (Current Project) Add the path to the directory containing the ColdFire Bridge SOPC com-
ponent:

Files Quartus II has a bug which causes it to generate a bad system unless the ColdFireBridge.bdf design
file is explicitly mentioned in the list of application files:

7

CHAPTER 2. FPGA APPLICATION

13. Compile the project (you’ll see lots of warnings. . .) and load it into the FPGA.

8

CHAPTER 2. FPGA APPLICATION

9

CHAPTER 2. FPGA APPLICATION

10

Chapter 3

EPICS application

The steps listed below show how to create an example EPICS IOC application which uses the ASYN I/O environment
to control the LEDs on the FPGA card.

1. Create a new EPICS <TOP> directory and make a new application in it. You must specify the full path to the
makeBaseApp.pl script in your EPICS installation:

/· · ·/makeBaseApp.pl -t ioc ledDriver
/· · ·/makeBaseApp.pl -t ioc -i -a RTEMS-uC5282 ledDriver

2. Edit configure/CONFIG to enable only the RTEMS-uC5282 target:

CROSS_COMPILER_TARGET_ARCHS = RTEMS-uC5282

3. Edit configure/RELEASE to specify the location of ASYN support:

ASYN=/· · ·/modules/soft/asyn

4. Edit ledDriverApp/src/Makefile:

• Build only for RTEMS IOC targets (change the PROD_IOC line to PROD_RTEMS):

PROD_RTEMS = ledDriver

• Add asyn support:

ledDriver_DBD += asyn.dbd

• Add the asyn library to ledDriver_LIBS (before the EPICS_BASE_IOC_LIBS line which is already
there):

ledDriver_LIBS += asyn
ledDriver_LIBS += $(EPICS_BASE_IOC_LIBS)

• Add the FPGA device support dbd file (to be written in a following step):

ledDriver_DBD += ledDeviceSupport.dbd

• Add the FPGA device support source file (to be written in a following step):

ledDriver_SRCS += ledDeviceSupport.c

5. Edit ledDriverApp/Db/Makefile and add the line:

11

CHAPTER 3. EPICS APPLICATION

DB += ledDriver.db

6. Create the ledDriverApp/Db/ledDriver.db file referred to in the previous step. The file should contain:

record(longout,"leds") {
field(DTYP,"asynInt32")
field(OUT,"@asyn(ledDriver 0 0)")

}

The three values in the OUT field are:

(a) The port name.

(b) The address (unused by this driver, but still needed)

(c) The timeout value, in seconds (unused by this driver, but still needed).

7. Create ledDriverApp/src/ledDeviceSupport.dbd with the contents:

registrar(ledDriverDeviceSupportRegistrar)

8. Create ledDriverApp/src/ledDeviceSupport.c. A complete listing of is included in appendix A. Much of this file
is common to all ASYN drivers. The following points describe the lines of particular interest to this application.

12 When the SOPC Builder generates a system it creates a C header file describing the system components.
This header file can be included explicitly or, as I have done, can be symbolically linked to a file in the
application source directory:

ln -s ../../../FPGA/coldfirebridge_0_map/system.h ledDriverApp/src/SOPC.h

14 The SOPC address space appears in the ColdFire address space at the locations mapped to CS1 and CS2.
The RTEMS board-support package sets up these chip selects at locations 3000000016 and 3100000016,
respectively.

15 The ’+1’ is required because the ColdFire bus is 16-bit big-endian so the least-significant byte on the data
bus appears at an odd address.

23 The table of asynInt32 methods can’t be statically initialized (like the asynCommon methods are at line 55)
since the asynInt32Base initialize method (invoked at line 99) writes to the table to override some methods.

41 The check for the existence of the I/O port turns off all of the LEDs. A real application might want to do
something different.

65 The line of code that actually performs the I/O operation.

72 More complete device support would probably do nothing more in this routine than register an iocsh com-
mand. The actual ASYN registration calls would then be called from this command when invoked by the
st.cmd script. This would allow the port name to be set from the st.cmd script rather than being burned
into the program.

80 The arguments to the registerPort method are:

(a) The port name.
(b) The port attributes. This driver is is not ’multi device’ and does not block.
(c) The autoconnect flag. This driver wants to be automatically reconnected.
(d) The priority of the I/O thread (unused for this driver).
(e) The stack size of the I/O thread (unused for this driver).

9. Run make to compile the application.

12

CHAPTER 3. EPICS APPLICATION

10. Use the uCDIMM ColdFire 5282 setenv command to set environment variables as shown below. The exact
values will differ as appropriate for your network numbers and NFS server:

B$ setenv IPADDR0 www.xxx.yyy.56
B$ setenv HOSTNAME ioccoldfire2
B$ setenv BOOTFILE ucdimm.boot
B$ setenv NAMESERVER www.xxx.yyy.167
B$ setenv NETMASK 255.255.252.0
B$ setenv SERVER www.xxx.yyy.167
B$ setenv NFSMOUNT nfsserver:/export/homes:/home
B$ setenv CMDLINE /· · ·/FPGA_IOC_Example/EPICS/iocBoot/iocledDriver/st.cmd
B$ printenv
FACTORY=Arcturus Networks Inc.
REVISION=uC5282 Rev 1.0 4MB External Flash
SERIAL=X42B20ADC-0130C
CONSOLE=ttyS0
KERNEL=0:linux.bin
KERNEL_ARGS=root=/dev/rom0
HWADDR0=00:06:3B:00:53:0C
FW_VERSION=180001
_0=10000000:400000:RW
RAMIMAGE=yes
IPADDR0=www.xxx.yyy.56
CACHE=on
HOSTNAME=ioccoldfire2
BOOTFILE=ucdimm.boot
NAMESERVER=www.xxx.yyy.167
NETMASK=255.255.252.0
SERVER=www.xxx.yyy.167
NFSMOUNT=nfssrv:/export/homes:/home
CMDLINE=.../FPGA_IOC_Example/EPICS/iocBoot/iocledDriver/st.cmd

11. Download and execute the application:

• Start the TFTP server on the ColdFire:

B$ tftp
uCTFTP Console 1.0 is running ...

• Use the tftp program on your workstation to transfer the executable image to the ColdFire:

tftp> binary
tftp> connect www.xxx.yyy.56
tftp> put ledDriver.boot

• When the executable image has been transferred press the <ESC> key to the ColdFire to terminate the
TFTP server. Use the goram command to start the IOC:

Downloading..
B$ goram
Go from RAM!
Go from 0x40000
NTPSERVER environment variable missing -- using www.xxx.yyy.167

***** Initializing network *****

13

CHAPTER 3. EPICS APPLICATION

Startup after External reset.
fs1: Ethernet address: 00:06:3b:00:53:0c

***** Initializing NFS *****
This is RTEMS-RPCIOD Release $Name: $
($Id: tutorial.tex,v 1.13 2005/09/28 22:11:06 norume Exp $)

Till Straumann, Stanford/SLAC/SSRL 2002
See LICENSE file for licensing info
This is RTEMS-NFS $Name: $
($Id: tutorial.tex,v 1.13 2005/09/28 22:11:06 norume Exp $)

Till Straumann, Stanford/SLAC/SSRL 2002
See LICENSE file for licensing info
Trying to mount www.xxx.yyy.167:/export/homes on /home

***** Initializing NTP *****
***** Starting EPICS application *****
Example RTEMS startup script
You may have to change ledDriver to something else
everywhere it appears in this file
#< envPaths
Register all support components
dbLoadDatabase("../../dbd/ledDriver.dbd",0,0)
ledDriver_registerRecordDeviceDriver(pdbbase)
Load record instances
dbLoadRecords("../../db/ledDriver.db","user=norume")
iocInit()
Starting iocInit
##
EPICS IOC CORE built on Jul 25 2005
EPICS R3.14.7 $$Name: $$ $$Date: 2005/09/28 22:11:06 $$
##
iocInit: All initialization complete
Start any sequence programs
#seq sncledDriver,"user=norume"
ioccoldfire2>

14

Chapter 4

Remote Reset

All VME IOCs at the APS have a card which monitors the console received-data line and generates a system reset when
a particular sequence (three consecutive control-X, control-Y or control-Z characters or any consecutive combinations
of these characters) of characters is detected. It is quite easy to add this capability to the ColdFire/FPGA IOC.

1. Make a special serial line cable which will connect the serial received-data and ground lines of the ColdFire
console port to the 9-pin connector on the FPGA development kit. The following picture shows an example.
The 9-pin connector plugged in to the FPGA development kit has only two pins (received-data and ground).

2. Add the path to the directory containing the Console Reset Detect component to the list of application user
libraries:

15

CHAPTER 4. REMOTE RESET

3. Add the following components to the application top-level entity (IOC_Example.bdf). The ConsoleReset-
BaudDivider is a simple modulus-651 counter which sets the serial line speed at 9600 baud (100000000 ÷
(9600 × 16) = 651). If you’re using a different system clock or a different serial line speed you’ll have to
replace this component with your own counter.

4. Recompile the project and load it into the FPGA. You should now have the ability to remotely reset the ColdFire.

16

Appendix A

ledDeviceSupport.c

1 /*
2 * ASYN Int32 driver for simple FPGA application
3 */
4 #include <epicsStdio.h>
5 #include <epicsExport.h>
6 #include <cantProceed.h>
7
8 #include <asynDriver.h>
9 #include <asynInt32.h>

10 #include <devLib.h>
11
12 #include "SOPC.h" /* Symbolic link to SOPC-generated system header file */
13
14 #define AVALON_BASE 0x30000000 /* Base of Avalon space in ColdFire space */
15 #define OPTR ((epicsUInt8 *)(AVALON_BASE+PIO_0_BASE+1))
16
17 /*
18 * Driver private storage
19 */
20 typedef struct drvPvt {
21 asynInterface common;
22 asynInterface asynInt32;
23 asynInt32 asynInt32Methods;
24 volatile epicsUInt8 *optr;
25 } drvPvt;
26
27 /*
28 * asynCommon methods
29 */
30 static void
31 report(void *pvt, FILE *fp, int details)
32 {
33 }
34
35 static asynStatus
36 connect(void *pvt, asynUser *pasynUser)

17

APPENDIX A. LEDDEVICESUPPORT.C

37 {
38 drvPvt *pdrvPvt = (drvPvt *)pvt;
39 epicsUInt8 dummy = 0;
40
41 if (devWriteProbe(sizeof(dummy), pdrvPvt->optr, &dummy) != 0) {
42 asynPrint(pasynUser, ASYN_TRACE_ERROR, "ledDriver: memory probe failed\n");
43 return asynError;
44 }
45 pasynManager->exceptionConnect(pasynUser);
46 return asynSuccess;
47 }
48
49 static asynStatus
50 disconnect(void *pvt, asynUser *pasynUser)
51 {
52 pasynManager->exceptionDisconnect(pasynUser);
53 return asynSuccess;
54 }
55 static asynCommon common = { report, connect, disconnect };
56
57 /*
58 * asynInt32 methods
59 */
60 static asynStatus
61 int32Write(void *pvt, asynUser *pasynUser, epicsInt32 value)
62 {
63 drvPvt *pdrvPvt = (drvPvt *)pvt;
64
65 *pdrvPvt->optr = value;
66 return asynSuccess;
67 }
68
69 /*
70 * Register ourself with ASYN
71 */
72 static void ledDriverDeviceSupportRegistrar(void)
73 {
74 drvPvt *pdrvPvt;
75 asynStatus status;
76 const char *portName = "ledDriver";
77
78 pdrvPvt = callocMustSucceed(sizeof(drvPvt), 1, "ledDriver");
79
80 status = pasynManager->registerPort(portName, 0, 1, 0, 0);
81 if(status != asynSuccess) {
82 printf("ledDriver registerDriver failed\n");
83 return;
84 }
85
86 pdrvPvt->common.interfaceType = asynCommonType;
87 pdrvPvt->common.pinterface = (void *)&common;

18

APPENDIX A. LEDDEVICESUPPORT.C

88 pdrvPvt->common.drvPvt = pdrvPvt;
89 status = pasynManager->registerInterface(portName, &pdrvPvt->common);
90 if (status != asynSuccess) {
91 printf("ledDriver registerInterface failed\n");
92 return;
93 }
94
95 pdrvPvt->asynInt32Methods.write = int32Write;
96 pdrvPvt->asynInt32.interfaceType = asynInt32Type;
97 pdrvPvt->asynInt32.pinterface = &pdrvPvt->asynInt32Methods;
98 pdrvPvt->asynInt32.drvPvt = pdrvPvt;
99 status = pasynInt32Base->initialize(portName, &pdrvPvt->asynInt32);

100 if (status != asynSuccess) {
101 printf("ledDriver pasynInt32Base->initialize failed\n");
102 return;
103 }
104 pdrvPvt->optr = OPTR;
105 }
106 epicsExportRegistrar(ledDriverDeviceSupportRegistrar);

19

APPENDIX A. LEDDEVICESUPPORT.C

20

Appendix B

Alternate Pinouts

The information in this tutorial applies to several Altera development kits, including:

1. Stratix II DSP development kit(EP2S60), 100 MHz clock.

2. Stratix II NIOS development kit (EP2S60), ”BoardClock100” input is a 50 MHz clock.

3. Cyclone II NIOS development kit (EP2C35), ”BoardClock100” input is a 50 MHz clock, expansion prototype
connectors require extensions to clear tall components on development kit.

The pin assignments for each of these kits are presented in the following table.

Signal 1 2 3
BoardClock100 A16 AF15 N2
ColdFireA[0] R31 E8 E25
ColdFireA[1] R30 J9 F24
ColdFireA[2] P32 F8 F23
ColdFireA[3] P31 A3 J21
ColdFireA[4] M32 C4 J20
ColdFireA[5] M31 C3 F25
ColdFireA[6] N31 C5 F26
ColdFireA[7] N30 K10 N18
ColdFireA[8] L32 H9 P18
ColdFireA[9] L31 G9 G23
ColdFireA[10] M30 A5 G24
ColdFireA[11] M29 B5 G25
ColdFireA[12] N29 D6 G26
ColdFireA[13] N28 A6 H23
ColdFireA[14] L30 H10 H24
ColdFireA[15] L29 K11 J23
ColdFireA[16] K32 F10 J24
ColdFireA[17] K31 A7 H25
ColdFireA[18] K30 C7 H26
ColdFireA[19] K29 D7 K18
ColdFireA[20] J32 A8 K19
ColdFireA[21] J31 G10 K23

21

APPENDIX B. ALTERNATE PINOUTS

ColdFireA[22] H32 J11 K24
ColdFireA[23] H31 F11 J25
ColdFireBS2n U27 A24 AD19
ColdFireBS3n U23 B24 AC19
ColdFireCLKOUT T32 AC14 N26
ColdFireCS1n V29 D18 AC20
ColdFireCS2n V23 J18 AB20
ColdFireD[16] AC27 H15 AE241

ColdFireD[17] AC26 J15 T21
ColdFireD[18] AD27 C16 V22
ColdFireD[19] AD26 A17 AF23
ColdFireD[20] Y23 C17 AE23
ColdFireD[21] Y22 A18 AC22
ColdFireD[22] Y25 F17 AB21
ColdFireD[23] Y24 K16 AD23
ColdFireD[24] AA27 G17 AD22
ColdFireD[25] AA26 A19 AC21
ColdFireD[26] Y27 C18 AD21
ColdFireD[27] Y26 C19 AF22
ColdFireD[28] W25 A20 AE22
ColdFireD[29] W24 J17 V18
ColdFireD[30] W27 A21 W19
ColdFireD[31] W26 C20 U17
ColdFireIRQ1n W28 A22 AF21
ColdFireOEn U22 K17 AA17
ColdFireRSTIn M22 H18 V17
ColdFireRSTOn M23 J14 W17
ColdFireRpWn U28 B22 AE20
ColdFireTAn W29 C21 U18
ColdFireTEAn L25 H17 AA18
ColdFireTSn V28 C22 AF20
LEDS[0] B4 AD26 AC10
LEDS[1] D5 AD25 W11
LEDS[2] E5 AC25 W12
LEDS[3] A4 AC24 AE8
LEDS[4] A5 AB24 AF8
LEDS[5] D6 AB23 AE7
LEDS[6] C6 AB26 AF7
LEDS[7] A6 AB25 AA11
SerialIn L16 H7 AB15

1. Pin AE24 on the Cyclone II kit is a dual-purpose pin and needs to be configured as Assignments→Device. . . ,
Device & Pin Options, Dual-Purpose Pins tab): Change nCEO from ”Use as programming pin” to ”Use as
regular IO”.

22

